Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice.
نویسندگان
چکیده
Cardiovascular disease, largely because of disruption of atherosclerotic lesions, accounts for the majority of deaths in people with type 1 diabetes. Recent mouse models have provided insights into the accelerated atherosclerotic lesion initiation in diabetes, but it is unknown whether diabetes directly worsens more clinically relevant advanced lesions. We therefore used an LDL receptor-deficient mouse model, in which type 1 diabetes can be induced at will, to investigate the effects of diabetes on preexisting lesions. Advanced lesions were induced by feeding mice a high-fat diet for 16 weeks before induction of diabetes. Diabetes, independently of lesion size, increased intraplaque hemorrhage and plaque disruption in the brachiocephalic artery of mice fed low-fat or high-fat diets for an additional 14 weeks. Hyperglycemia was not sufficient to induce plaque disruption. Furthermore, diabetes resulted in increased accumulation of monocytic cells positive for S100A9, a proinflammatory biomarker for cardiovascular events, and for a macrophage marker protein, without increasing lesion macrophage content. S100A9 immunoreactivity correlated with intraplaque hemorrhage. Aggressive lowering primarily of triglyceride-rich lipoproteins prevented both plaque disruption and the increased S100A9 in diabetic atherosclerotic lesions. Conversely, oleate promoted macrophage differentiation into an S100A9-positive population in vitro, thereby mimicking the effects of diabetes. Thus, diabetes increases plaque disruption, independently of effects on plaque initiation, through a mechanism that requires triglyceride-rich lipoproteins and is associated with an increased accumulation of S100A9-positive monocytic cells. These findings indicate an important link between diabetes, plaque disruption, and the innate immune system.
منابع مشابه
Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL.
Hyperglycemia and hyperlipidemia are important risk factors for diabetes-accelerated atherosclerosis. Macrophage proliferation has been implicated in the progression of atherosclerosis. We therefore investigated the effects of hyperglycemia and hyperlipidemia on macrophage proliferation in murine atherosclerotic lesions and isolated primary macrophages. Hyperglycemic LDL receptor-deficient mice...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملCAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis.
Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmo...
متن کاملIncreased atherosclerosis in myeloperoxidase-deficient mice.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, generates an array of oxidants proposed to play critical roles in host defense and local tissue damage. Both MPO and its reaction products are present in human atherosclerotic plaque, and it has been proposed that MPO oxidatively modifies targets in the artery wall. We have now generated MPO-deficient mice, and show here tha...
متن کاملDiabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions.
Diabetes in humans accelerates cardiovascular disease caused by atherosclerosis. The relative contributions of hyperglycemia and dyslipidemia to atherosclerosis in patients with diabetes are not clear, largely because there is a lack of suitable animal models. We therefore have developed a transgenic mouse model that closely mimics atherosclerosis in humans with type 1 diabetes by breeding low-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2008